
Day 21 Arti�cial Neural Networks
Dec 1, 2020



Announcements
Homework 5 Working with Tensorflow. Due this Friday. This is the last homework

assignment!

Having trouble installing tensorflow? Use Google Colab (just upload your

notebook).

Projects Rubric posted to D2L.

Due Dec 14th; Review 3 projects by Dec 16th

8-10 minute video presentation + documented notebook on your analysis

3 In-class work periods for the project



Calendar
This week

Tuesday 12/1: Day 20 Neural Networks 1; Project work day 2

Thursday 12/3: Day 21 Neural Networks 2

Last week of classes
Tuesday 12/8: Project work day 3

Thursday 12/10: Project work day 4



Arti�cial Neural Networks





Forward propagation (the basics)
�. Prepare the network

�. Prepare the weight matrices

�. Determine the activity of the hidden layer

�. Apply the activity function to the hidden layer activities

�. Determine the activity of the output layer

�. Apply the activity function to the output layer activities

�. Compare predictions to normalized values



All work this relies on 'dot' products
We can only multiply matrices together where the columns of the first matrix is the same size
of the row of the second project. You get a matrix of size rows of column matrix by columns of
the second matrix.

For example, multiplying a M by N martix by a N by P matrix gives a M by P matrix.

The most common 'dot' product you are likely to see is a 1 by N multiplied by an N by 1, which
gives a 1 by 1 matrix: a scalar.
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= (3)(1) + (2)(4) + (1)(2) = 3 + 8 + 2 = 13



Prepare the network
Store the input data and the output data

Normalize (standardize) those data

Decide on network properties

Input layers: how many features do you have?

Output layers: what are you predicting?

Hidden layers: You choose



In [2]: %matplotlib inline 
import matplotlib.pyplot as plt 
import numpy as np 
 
# input data (hours of sleep, hours of study) 
X = np.array([[3,5], [5,1], [10,2]]) 
 
# normalized X 
X_norm = X / np.max(X) 
print("X_norm =") 
print(X_norm) 
 
# output data (test score) 
y = np.array([[75], [83], [93]]) 
 
# normalized y 
y_norm = y/100 
print("y_norm =") 
print(y_norm) 
 
# Neural Network properties 
inputLayerSize = 2 
outputLayerSize = 1 
hiddenLayerSize = 3 
 
print(X_norm.shape) 
print(y_norm.shape) 

X_norm = 
[[0.3 0.5] 
 [0.5 0.1] 
 [1.  0.2]] 
y_norm = 
[[0.75] 
 [0.83] 
 [0.93]] 



(3, 2) 
(3, 1) 



Prepare the weight matrices
For our case, we are using one hidden layer, so we have two "simple" weight matrices.

W1 is the matrix of weights connecting inputs to the hidden layer, so it must be input

layers (2) by hidden layers (3) in size (i.e, 2 by 3)

W2 is the matrix of weights connecting hidden layer to the output layer, so it must be

hidden layers (3) by output layers (1) in size (i.e, 3 by 1)

For this example, we simply use random numbers drawn from a Gaussian (normal)
distribution.



In [3]: # Define synapse weights 
W1 = np.random.randn(inputLayerSize, hiddenLayerSize) 
W2 = np.random.randn(hiddenLayerSize, outputLayerSize) 
print("W1\n---") 
print(W1) 
print('shape:', W1.shape) 
print('\n') 
print("W2\n---") 
print(W2) 
print('shape:', W2.shape) 

W1 
--- 
[[ 0.77318236 -0.8790112  -2.43486401] 
 [ 1.6126631  -2.24382628  0.85529834]] 
shape: (2, 3) 
 
 
W2 
--- 
[[ 1.58046393] 
 [ 0.55830599] 
 [-0.22941993]] 
shape: (3, 1) 



Determine the activity of the hidden layer
To compute the activity of each neuron in hidden layer ( ), we take the the product of the
data ( ) with the weight matrix that connects the input layer to the hidden layer ( ),

In our example  is 3 by 2 and  is 2 by 3, so the resulting product,  is 3 by 3.

Z (2)

X W (1)

X ⋅ W (1) = Z (2)

X W (1) Z (2)



In [5]: # Apply the first weights to inputs to get hidden layer activity 
Z2 = np.dot(X_norm, W1) 
print("Z2 =") 
print(Z2) 
print(Z2.shape) 

Z2 = 
[[ 1.03828626 -1.3856165  -0.30281003] 
 [ 0.54785749 -0.66388823 -1.13190217] 
 [ 1.09571498 -1.32777645 -2.26380434]] 
(3, 3) 



Apply the activation function to the activity
Now that we have the activity, we need to apply our activation function to see if the neuron
"fires." We choose a sigmoid (like logisitic regression) for the activation function (we are free
to choose a variety of possible activations).

We first create a sigmoid function 

Then, we compute , which is the result of passing the activity values through the

activation function

Where  is the activation function of our choosing. We should get back a 3 by 3 matrix in this
example.

f(z) =
1

1 + e−z

a(2)

a(2) = f(z(2))

f



In [6]: # Define our activation function 
def sigmoid(z): 
    #Apply sigmoid activation function to scalar, vector, or matrix 
    return 1/(1+np.exp(-z)) 
 
# Apply the activation function to our activity levels 
a2 = sigmoid(Z2) 
print("a2 =") 
print(a2) 
print(a2.shape) 

a2 = 
[[0.7385192  0.20010848 0.42487069] 
 [0.63363837 0.33986672 0.24381023] 
 [0.74945636 0.2095274  0.09416536]] 
(3, 3) 



Determine the activity of the output layer
Now we use the weights that connect the hidden layer to the output layer ( ) to determine
the activity of the output layer ( ). We do that by taking the product of  and the weights.

In this example  is 3 by 3 and  is 3 by 1, the resulting activity, , is 3 by 1.

W (2)

z(3) a(2)

z(3) = a(2) ⋅ W (2)

a(2) W (2) z(3)



In [9]: # Apply the second weights to the hidden layer 
Z3 = np.dot(a2, W2) 
print("Z3 =") 
print(Z3) 
print('shape: ', Z3.shape) 

Z3 = 
[[1.18145092] 
 [1.13525728] 
 [1.27986574]] 
shape:  (3, 1) 



Apply the activation function to the output layer activity
Now that we have the output layer activity, we need to again apply our activation function to
see if the neuron "fires."

We use the sigmoid function we created

Then, we compute , which is estimate of the normalized y values by passing the

activity ( ) through the activation function

Where  is the activation function of our choosing. We should get back a 3 by 1 matrix in this
example.

ŷ

z(3)

ŷ = f(z(3))

f



In [10]: # Apply the activation function to produce prediction for yHat 
yHat = sigmoid(Z3) 
print('estimates:\n', yHat) 

estimates: 
 [[0.76520858] 
 [0.75680781] 
 [0.78242692]] 



Compare to the real data (supervised learning)
Now we can simply compare them.



In [11]: # Compare yhat to known y_norm 
print("--------------") 
print("How did we do?") 
print("y_norm:") 
print(y_norm) 
print("yHat:") 
print(yHat) 

-------------- 
How did we do? 
y_norm: 
[[0.75] 
 [0.83] 
 [0.93]] 
yHat: 
[[0.76520858] 
 [0.75680781] 
 [0.78242692]] 



Today's Class
We will put you in your project groups

Today's in-class notebook is an update for us on your progress

We will drop in to discuss your project with you

On-track goal: start modeling data, discuss issues with models



Questions, Comments, Concerns?


